Research Summary

 $\bullet \bullet \bullet$

Hannah Fritsch¹ Supervised by Dr Alok Bohara² October 3, 2019

Details and Acknowledgements:

Sustainable Development Action Lab Nepal Study Center (NSC) University of New Mexico (UNM)

Acknowledgments: UNM's Himalayan Study Abroad Program (2017, 2018 undergraduate student cohorts), Pratiman-Neema Memorial Foundation (local collaborator, Siddharthanagar, Province 5, Nepal), Province 5 Government, Thomas G. Henderson (undergraduate student), and many economics graduate mentors.

¹Undergraduate Honors student, ² Professor, Department of Economics, UNM& Director of NSC

Thesis Topic and Structure

Topic: Air Quality and Environmental Education in Nepal

• Literature review

- Case studies of areas with similar pollution
- Practices for communicating data/ citizen science initiatives
- Analyzing air quality in Province 5 of Nepal
 - Patterns, predictive modeling
- Appendices

Context

- Emphasis: creating tools to communicate with data.
- A mix of analysis and "end solution"
- The sensors are already there, and prior research does indicate that there is a large air quality problem in the district.
- Current focus is on infrastructure for web dashboard, plus exploratory analysis

How to get to a web based dashboard?

 $\bullet \bullet \bullet$

What would a useful one even look like?

Starting Point

- A collection of different sensors and types of sensors bringing in data
- An assortment of CSV files floating around, with no standardized way to handle them

Data Pipeline to Dashboard

Collection

Cleaning

Database

Dashboard

Retrieving the data from the sensors, once it has been generated Cleaning and formatting the data so that it can be directly used or added to the database. Where the data is stored. Can be queried,and used for multiple functions. The updating public display of the data. Makes data from the database viewable.

Toolsets

R ggplot2 Analysis MySQL Workbench HeidiSQL command line

Python Pandas Bidict

Data Standardization

- What does the data need to look like across sensors?
- Determining time zones, units like temperature, variable names
- Example: Time and Date
 - Consistent time zone, format, field name
 - These were not originally consistent

Sensor Naming Conventions

(Province, District, City, Ward, Sensor Location, Sensor Type) P5_Parasi_Ramg_NA_Prithvi_PA Long Version: Province 5, Nawalparasi, Ramgram, unknown Ward, Prithvi Chandra Hospital, Purple Air

Cleaning Scripts

Enforce/ Implement the standards defined.

A collection of custom classes and functions

Main modules: name, and format

Automated formatting given sensor type.

Database Structure

MySQL database Table For Each Sensor Dictionary Table for Names Additional as needed **User Permissions**

Example Table		
Time	Sensor	Data Columns
Datetime values	Unique Sensor ID	The remaining data fields for the sensor

Servers and Hosting

- Virtual/ Shared Linux Server
- cPanel
 - control panel for accessing the server and editing the site
 - \circ $\,$ can edit access settings
 - GUI for file management
- UNM Hosting and domain name services
 - Continuity and support
 - Price of scaling is reasonable
- Currently, split between two servers

Site Structure

Dashboard:

A collection of graphs and interpretations that update based on the data in the database. Could be made more interactive in the future

Analysis:

Static graphs and interpretation, informational pages, papers. An example would be looking at historical trends, or uploading a research paper

Dashboard and Analysis

 $\bullet \bullet \bullet$

https://dempnsc.unm.edu

R

Developing a codebase for standardized graphs

General analysis work

Technical Future

My work:

Automation

User interface/useability

Error handling

Some feature expansion

Possible extensions:

Dashboard expansion

Geospatial

Mobile Application

Traditional Analysis

Questions?