Details and Acknowledgements:

Sustainable Development Action Lab
Nepal Study Center (NSC)
University of New Mexico (UNM)

Acknowledgments: UNM's Himalayan Study Abroad Program (2017, 2018 undergraduate student cohorts), Pratiman-Neema Memorial Foundation (local collaborator, Siddharthanagar, Province 5, Nepal), Province 5 Government, Thomas G. Henderson (undergraduate student), and many economics graduate mentors.

1 Undergraduate Honors student, 2 Professor, Department of Economics, UNM & Director of NSC
Thesis Topic and Structure

Topic: Air Quality and Environmental Education in Nepal

- **Literature review**
 - Case studies of areas with similar pollution
 - Practices for communicating data/ citizen science initiatives

- **Analyzing air quality in Province 5 of Nepal**
 - Patterns, predictive modeling

- **Appendices**
Context

- Emphasis: creating tools to communicate with data.
- A mix of analysis and “end solution”
- The sensors are already there, and prior research does indicate that there is a large air quality problem in the district.
- Current focus is on infrastructure for web dashboard, plus exploratory analysis
How to get to a web based dashboard?

What would a useful one even look like?
Starting Point

- A collection of different sensors and types of sensors bringing in data
- An assortment of CSV files floating around, with no standardized way to handle them
Data Pipeline to Dashboard

Collection
Retrieving the data from the sensors, once it has been generated.

Cleaning
Cleaning and formatting the data so that it can be directly used or added to the database.

Database
Where the data is stored. Can be queried, and used for multiple functions.

Dashboard
The updating public display of the data. Makes data from the database viewable.
Toolsets

R
 ggplot2
 Analysis

MySQL
 Workbench
 HeidiSQL
 command line

Python
 Pandas
 Bidict
Data Standardization

- What does the data need to look like across sensors?
- Determining time zones, units like temperature, variable names
- Example: Time and Date
 - Consistent time zone, format, field name
 - These were not originally consistent
Sensor Naming Conventions

\(\text{Province, District, City, Ward, Sensor Location, Sensor Type}\)

P5_Parasi_Ramg_NA_Prithvi_PA

Long Version: *Province 5, Nawalparasi, Ramgram, unknown Ward, Prithvi Chandra Hospital, Purple Air*
Cleaning Scripts

Enforce/ Implement the standards defined.

A collection of custom classes and functions

Main modules: name, and format

Automated formatting given sensor type.
Database Structure

MySQL database

Table For Each Sensor

Dictionary Table for Names

Additional as needed

User Permissions

<table>
<thead>
<tr>
<th>Example Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
</tr>
<tr>
<td>Datetime values</td>
</tr>
</tbody>
</table>
Servers and Hosting

- Virtual/Shared Linux Server
- cPanel
 - control panel for accessing the server and editing the site
 - can edit access settings
 - GUI for file management
- UNM Hosting and domain name services
 - Continuity and support
 - Price of scaling is reasonable
- Currently, split between two servers
Site Structure

Dashboard:
A collection of graphs and interpretations that update based on the data in the database. Could be made more interactive in the future.

Analysis:
Static graphs and interpretation, informational pages, papers. An example would be looking at historical trends, or uploading a research paper.
Dashboard and Analysis

https://dempnsc.unm.edu
Developing a codebase for standardized graphs

General analysis work
Technical Future

My work:
- Automation
- User interface/useability
- Error handling
- Some feature expansion

Possible extensions:
- Dashboard expansion
- Geospatial
- Mobile Application
- Traditional Analysis
Questions?