Role of Agronomical Knowledge in Crop Diversification and Adoption of Hybrid Rice Seeds: A Case Study of Nepal

13th HPRC, 2018 :: 47th ACSA, 2018 | Madison, Wisconsin

Soumyajit Chakraborty, UNM Alok K. Bohara, NSC & UNM Nayan K. Joshi, CIMMYT-Nepal

Introduction

- Agricultural reforms in late '80s and liberalization policies
- Globalization: (a) improving own agrarian sector
 - (b) importing cheap imports from developed countries
- South Asian countries: Agriculture → Labor-intensive sector
- Technological rigidities in staple crops
- Subsidies in cash crops
- Nepal \rightarrow 70% of population in agriculture \rightarrow 33% of GDP \rightarrow 18-20% cultivable land

Introduction, cont'd

• Crop diversification → risk-averse strategy

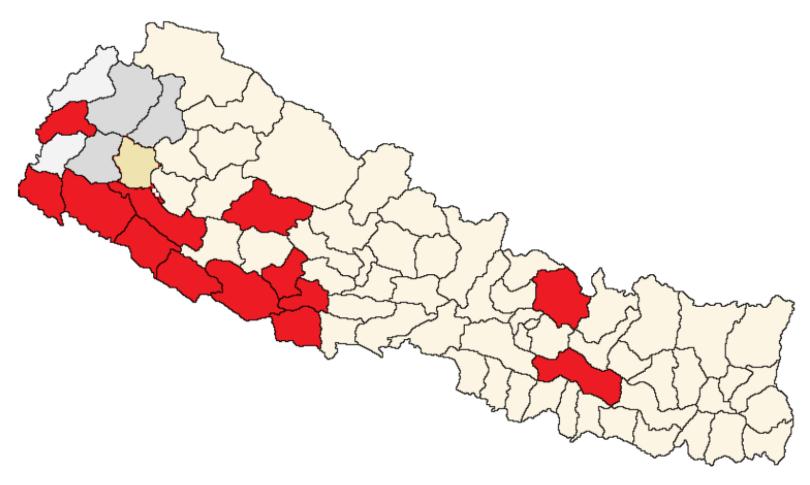
```
Crop diversification in: (a) cash crops(b) staple crops
```

- 1. Farm-level income ↑
- 2. Employment ↑
- 3. Biodiversity loss ↓ (*Pingali and Rosegrant, 1995; Ramesh Chand, 1996; Ryan and Spencer, 2001*)
- Crop biodiversity \rightarrow fundamental to ensure food security (*Khoury et al., 2014*)
- 70-100 % of excess demand for food by 2050 (*FAO*)

Introduction, cont'd

- Smallholder famers → very reluctant to adopt new technology
 → traditional practices
- Crop diversification in: (a) cash crops subsidies are here!
 (b) staple crops price supports mainly!
- Promotion of labor-substituting technologies
- Farm-level input subsidies
- Micro-credit opportunities
- Agronomical knowledge

Quick Literature Review


- Theoretical models of a representative farmer's decision in:
 - (a) adopting hybrid seeds
 - (b) adopting advanced technology
 - (c) crop diversification
- Feder and Slade (1984): human capital model with land constraints
- *Isham* (2002): importance of social capital as well as a decision variable
- Ghandim and Pannell (1999): 'learning by doing'
- Leathers and Quiggin (1991): nature of risks \rightarrow hedging against uncertainty \rightarrow crop diversification
- De Falco and Perrings (2005): dynamic optimization \rightarrow risk-averse farmers' attitudes

Adding *any* ∆ to literature?

- Linking agricultural extension services *directly* to farmers' decisions
- Access to: (a) extension services
 - (b) agro-vets
 - (c) agro-markets
- There might be an *indirect* linkage:
 - Agricultural extension services → agronomical knowledge → farmers' agricultural decisions
- Most common techniques → 'decision' as a latent variable
- Croppenstedt and Demeke (1996): 'decision' as a selection variable
- Doss and Morris (2001): 2-stage model of fertilizer and maize variety adoption

Data

Figure 1: NSAF Baseline Survey Districts

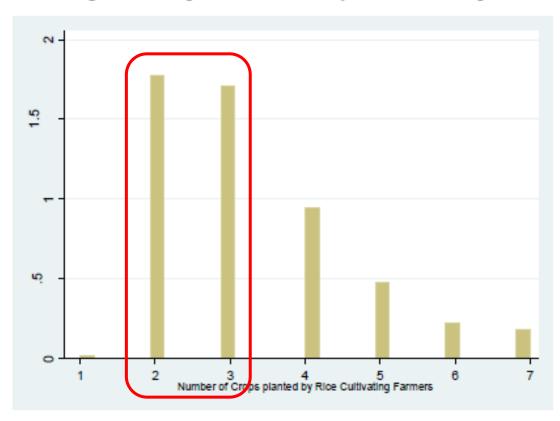
Note: Red colored ones are the survey districts Source: NSAF Baseline Survey, Preliminary Draft

Data, cont'd

- Nepal Seed and Fertilizer (NSAF) Baseline data, 2016
- NSAF is a 5 years (2016-2021) project funded through USAID's *Feed the Future* program
- Aims: (a) improving seed and fertilizer value chains in ZOI (20 districts) → 5 earthquake affected districts
 - (b) improving agricultural capacity of both public and private sectors
 - (c) extending agronomical knowledge
 - (d) 6 target crops: rice, maize, lentil, tomato, cauliflower, and onion
 - (e) 25 NSAF districts
- Our data has 13 districts including 2 earthquake affected ones → 600 HHS, 95 Agro-vets, 10 seed companies, 13 Agro-development offices
- 1,932 individual farmers

Data, cont'd

Table 1: Descriptive Statistics of Socioeconomic and Some Selected Variables


Variables	Mean
Age	45.28
Female (%)	47.62
Region (Base: Other regions)	
Far western (%)	80.07
Caste (Base: Other Castes)	
Upper Castes (%)	38.87
Education Level (Base: High School)	
Above High School (%)	29.91
Access to Agro-Vet within 60 minutes of walking distance (%)	92.24
Access to Agri-market within 60 minutes of walking distance (%)	85.97
Access to Agri-extension by walking distance (%)	
Under 30 minutes	57.92
Between 30-60 minutes	25.62
Between 60-120 minutes	10.51
Beyond 120 minutes	5.95
Attendance in Agri-fair in Last 2 Years (%)	10.66
Observations*	1,932

Source: Author's calculation from NSAF Data

^{*} Observation for Education level is 1,518

Data, cont'd

Figure 2: Crop diversification by number of crops

Source: Author's calculation from NSAF Data

Table 2: Descriptive Statistics of Outcome and Explanatory Variables

Table 2: Descriptive Statistics of Outcome and Explanatory Variables				
Variables	Percentage Share			
Use of Hybrid Rice Seeds	33.44			
Crop Diversification by Number of Crops	•			
1	0.31			
2	33.28			
3	32.14			
4	17.75			
5	8.95			
6	4.19			
7	3.36			
Agronomical Knowledge Index (0-9 Scale)				
0	31.68			
1	19.25			
2	10.14			
3	12.58			
4	8.44			
5	7.30			
6	4.24			
7	3.62			
8	1.19			
9	1.55			

Source: Author's calculation from NSAF Data

Methodology

Number_of_crops_i = $\beta_0 + \beta_1 * agro_knowledge + X_i'\beta + \varepsilon_i$: Poisson regression

Use_of_hybrid_seed_i = $\beta_0 + \beta_1 * agro_knowledge + X_i'\beta + \mu_i$: Logit regression

The instrumental variable approach with additive two-step GMM and probit also have been used to get some *preliminary ideas*.

Empirical Results

Table 3: Poisson model for Crop Diversification

	Dependent Variable: Number of Crops				ops
	(1)	(2)	(3)	(4)	(5)
Variables	OLS	OLS	Poisson	Poisson	Poisson with Exposure
Agronomical Knowledge	0.221***	0.154***	0.0630***	0.0413***	0.0413***
	(0.0142)	(0.0171)	(0.00375)	(0.00449)	(0.00657)
Age		-0.00697***		-0.00209***	-0.00209
		(0.00251)		(0.000760)	(0.00133)
Female		-0.259***		-0.0787***	-0.0787***
		(0.0658)		(0.0196)	(0.0301)
Region (Base: Other regions)					
Farwestern		0.891***		0.324***	0.324***
		(0.0714)		(0.0254)	(0.0446)
Caste (Base: Other Castes)					
Upper Castes		0.0556		0.0195	0.0195
		(0.0650)		(0.0193)	(0.0301)
Education Level (Base: High School)					
Above High School		0.232***		0.0676***	0.0676**
		(0.0689)		(0.0200)	(0.0312)
Agro-Vet within 60 minutes		0.286***		0.111***	0.111
		(0.105)		(0.0353)	(0.0724)
Agri-fair meeting		0.0505		0.0111	0.0111
		(0.110)		(0.0300)	(0.0436)
Agri-Extension Distance		-0.240***		-0.0732***	-0.0732***
		(0.0351)		(0.0108)	(0.0200)
Constant	2.788***	2.722***	1.036***	0.943***	-1.002***
	(0.0341)	(0.200)	(0.0113)	(0.0653)	(0.116)
Observations	1,932	1,518	1,932	1,518	1,518
R-squared/Pseudo R-squared	0.150	0.256	0.039	0.039	0.039
Log Likelihood	-	-	-2560.85	-2560.85	-2560.85

Robust standard errors in parentheses

Source: Author's calculation from NSAF Data

^{***} p < 0.01, ** p < 0.05, * p < 0.1

Empirical Results, cont'd

Table 4: Logit model for Adoption of Hybrid Seeds

	Dependent Variable: Use of Hybrid Rice Seed				
	(1)	(2)	(3)	(4)	
Variables	OLS	OLS	Logit	Logit	
Agronomical Knowledge	0.0430***	0.0323***	0.189***	0.167***	
	(0.00482)	(0.00600)	(0.0217)	(0.0315)	
Age		0.00277***		0.0159***	
		(0.000977)		(0.00546)	
Female		0.0403*		0.231*	
		(0.0235)		(0.126)	
Region (Base: Other regions)					
Farwestern		0.135***		0.927***	
		(0.0282)		(0.214)	
Caste (Base: Other Castes)					
Upper Castes		-0.205***		-1.155***	
		(0.0228)		(0.140)	
Education Level (Base: High S	chool)				
Above High School		0.000181		-0.0481	
		(0.0242)		(0.136)	
Agro-Vet within 60 minutes		-0.0560		0.250	
		(0.0435)		(0.422)	
Agri-fair meeting		0.0566		0.283	
		(0.0425)		(0.208)	
Agri-Extension Distance		-0.121***		-0.719***	
		(0.0143)		(0.105)	
Constant	0.239***	0.329***	-1.134***	-1.499**	
	(0.0140)	(0.0849)	(0.0715)	(0.659)	
Observations	1,932	1,518	1,932	1,518	
R-squared/Pseudo R-squared	0.044	0.171	0.039	0.158	
Log Pseudolikelihood	-	-	-1189.46	-807.42	

Robust standard errors in parentheses

^{***} p<0.01, ** p<0.05, * p<0.1

Source: Author's calculation from NSAF Data

Empirical Results, cont'd

Table 5: IV Poisson GMM Results for Crop Diversification

Table 6: IV Probit Two-Step Results for Adoption of Hybrid Seeds

	Dependent Variable: Number of Crops				Dependent Variable: Use of Hybrid Rice See			
	(1)	(2)	(3)		(1)	(2)	(3)	
Instrumen	ited: Agronomical	l Knowledge		Instrum	nented: Agronomical	Knowledge		
Instrument: Distance to Agri	Instrument: Distance to Agricultural Extension Services (in Minutes of Walk)			Instrument: Distance to Agricultural Extension Services (in Minutes of Walk)				
Variables	30 ≤ t ≤ 60	60 < t ≤ 90	90 < t ≤ 120	Variables	30 ≤ t ≤ 60	60 ≤ t ≤ 90	90 ≤ t ≤ 120	
Agronomical Knowledge	0.123***	0.123***	0.121***	Agronomical Knowledge	0.984***	0.780***	0.919***	
	(0.0236)	(0.0202)	(0.0187)		(0.226)	(0.198)	(0.290)	
Age	-0.00168*	-0.00167*	-0.00169*	Age	0.0125**	0.0118**	0.0126**	
	(0.000905)	(0.000895)	(0.000876)		(0.00568)	(0.00493)	(0.00550)	
Female	-0.0210	-0.0208	-0.0222	Female	0.580***	0.509***	0.567***	
	(0.0242)	(0.0236)	(0.0236)		(0.154)	(0.135)	(0.169)	
Region (Base: Other regions)			, ,	Region (Base: Other regions)				
Farwestern	0.0819	0.0809	0.0898	Farwestern	-1.704***	-1.213**	-1.554**	
	(0.0737)	(0.0619)	(0.0574)		(0.577)	(0.509)	(0.732)	
Caste (Base: Other Castes)				Caste (Base: Other Castes)				
Upper Castes	-0.0446	-0.0448	-0.0426	Upper Castes	-1.238***	-1.130***	-1.238***	
-11	(0.0287)	(0.0274)	(0.0261)		(0.194)	(0.172)	(0.232)	
Education Level (Base: High School)	((,	Education Level (Base: High School				
Above High School	0.0353	0.0352	0.0362	Above High School	-0.426**	-0.327**	-0.390**	
	(0.0243)	(0.0237)	(0.0234)		(0.169)	(0.147)	(0.183)	
Agro-Vet within 60 minutes	0.157***	0.156***	0.160***	Agro-Vet within 60 minutes	0.173	0.472*	0.394	
	(0.0421)	(0.0415)	(0.0401)		(0.322)	(0.269)	(0.306)	
Agri-fair meeting	-0.103**	-0.103**	-0.0987**	Agri-fair meeting	-0.992***	-0.705**	-0.901**	
g	(0.0492)	(0.0468)	(0.0453)		(0.357)	(0.306)	(0.425)	
Constant	0.764***	0.765***	0.762***	Constant	-1.666***	-1.922***	-1.873***	
Communication	(0.0616)	(0.0623)	(0.0619)		(0.417)	(0.359)	(0.395)	
Observations	1,518	1,518	1,518	Observations	1,518	1,518	1,518	
O V V CL T WILDING	1,510	1,510	1,510	Standard errors in parentheses			·	

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, *p<0.1 Source: Author's calculation from NSAF Data

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1Source: Author's calculation from NSAF Data

Conclusion and Policy Perspectives

- Agronomical knowledge → significant and positive effects on farmers' decisions
- Agro-extension services play pivotal role
- (a) Availability of seeds and fertilizers and (b) Affordability of seeds and fertilizers
- (a) and (b) sometimes are intertwined with eco-political conditions
- Certain price support policies are climate specific
- Bringing in more projects like NSAF, land reforms *e.g. Operation Barga*, issues of migration, female farmers, micro-credit opportunities

Thanks!

