The Stressor in Adolescence of Menstruation: Economic Analysis of Effective Coping Strategies

SIOBHAN K. YILMAZ, ALOK K. BOHARA, & SWATI THAPA OCTOBER 2018 HPRC 2018

Introduction

- Menstrual hygiene management (MHM) is a growing subfield of WASH research in developing world
 - Girls often face confusion and surprise, coupled with cultural taboos/stigmas
 - Lack of knowledge, hygienic behavior, and supporting infrastructure/access
 - Links have been found between reproductive tract infections (RTIs) & poor menstrual hygiene (Anand, Singh, and Unisa 2015; Ranabhat et al. 2015)
 - Missed opportunities at school, including dropping-out (WHO, 2014)
- Lack of quantitative evidence in research on MHM & lack of specific focus on emotional consequences
 - This work attempts to fill some of these gaps by examining emotional/psychological wellbeing (not just attendance rates or knowledge)
 - Framed by the <u>Transactional Model of Stress & Coping</u>

BACKGROUND

Menstruation & Emotional Wellbeing

- Gap in MHM literature with regard to cognitive experiences
 - Usually appears as side note or is analyzed from psychology/sociological perspective from afar
 - ► Kenya → girls missed school due to fears of embarrassment/harassment and this "emotional geography" serves to only reinforce gender inequalities (Jewitt & Ryley, 2014)
 - Females adopt a sexualization of women from society and internalize it to make menstruation "bad", e.g. "Objectification Theory" (Grose & Grabe, 2014)
- Is evidence of emotional damage during menstruation
 - Reported shame & fear of menstruation occurring at school (McMahon et al, 2011)
 - Evidence that feeling of depression, irritability, and stress reduced with health education intervention (Haque et al, 2014)

Context & Research in Nepal

- Strong cultural taboos surrounding menstruation, due to superstitions surrounding impurity of blood
 - Chhaupadi : practice of requiring menstruating girls/women live in a separate hut during menstruation (Katz, 2014)
 - Limitations on cooking, worshiping, and visiting family/friends
- Prior Research on MHM
 - 92% of girls heard of menarche prior to start, but not details → first menstruation a shock (WaterAid, 2009; Adhikari et al, 2007)
 - ▶ 50% of girls missed school and 82% did not participate in cultural functions (Auemaneekul et al, 2013)
 - 36% of schools have a separate toilet for girls (Sommer et al, 2012)
- Key series of <u>quantitative</u> work is by Oster & Thornton (2009, 2011) focused on random provision of sanitary supplies in rural Nepal
 - Found no significant impact on attendance rates (!)

DATA & METHODOLOGY

Data

- Primary Survey Data (May 2016 & December 2017)
 - ▶ May \rightarrow Bhairahawa (aka Siddharthnagar), 2 Schools
 - ▶ December \rightarrow Purkot, 1 School
 - ▶ N = 310
- Collected by Pratiman-Neema Memorial Foundation (PNMF) in conjunction with non-profit Women2Be who provided reusable feminine hygiene kits
 - Demographics
 - Current Knowledge & Menstrual Hygiene Practices
 - Current School Infrastructure (Perceived)
 - Cultural Practices During Menstruation
 - "Do [girls] feel lonely and sad during menstruation cycle?"

Conceptual Framework-Transactional Model of Stress & Coping

- Positions stressful life events as "person-environment transactions" (R.S. Lazarus, 1966; R. S. Lazarus & Cohen, 1977)
- Four Key Constructs
 - Primary Appraisal
 - > Evaluation of the stressor itself & consideration of susceptibility/severity and motivational relevance
 - Secondary Appraisal
 - ▶ Evaluation of the controllability of the stressor & person's coping resources (includes self-efficacy)
 - Coping Efforts
 - ▶ Problem-Management → changing situation itself (active coping, problem solving, information seeking)
 - ► Emotional-Regulation → changing feelings surrounding stressor (venting, social support seeking, denial/avoidance)
 - Coping Outcomes
 - ► Health behaviors, functional status, or **emotional wellbeing**

Figure 1: Transactional Model of Stress & Coping

Source: Glanz, Rimer, and Viswanath, "Companion Materials." (2008)

Hypotheses

- **Hypothesis # 1**: The presence of infrastructure and education to support hygiene in schools will help adolescent females to feel less lonely or sad during menstruation.
 - Perceptions of tools necessary to deal with the stressor (menstruation) will impact self-efficacy beliefs, influence coping efforts, and impact emotional wellbeing
- **Hypothesis #2:** Strong cultural norms which restrict adolescent girl's mobility and freedom during menstruation will lead them to experience more negative emotional wellbeing.
 - Social support is a key moderator of the model, and has been shown to be a "stress-buffer" (Heitzmann & Kaplan, 1988; Cohen & Wills, 1985; Christian & Stoney, 2006)
 - > The lack of social support found with isolation and behavior restrictions could remove these buffering benefits
 - Avoidance/Denial coping strategies been shown to be maladaptive and increase adverse psychosocial outcomes (Carver et al, 1993; Schwartz et al, 1995; Cordova et al, 2001; Zakowski et al, 2004)
 - Prior evidence in literature of gender-focused cultural limitations surrounding stressful life events leading to lower mental/emotional wellbeing

Empirical Specification

$$PWB_{i}^{*} = \begin{cases} \mathbf{1} & if \qquad \beta_{0} + \beta_{1}SchEnv_{i} + \beta_{2}CultFactors_{i} + \beta_{3}Age_{i} + \beta_{4}AgeSq_{i} + \beta_{5}X_{i} + \varepsilon_{i} > 0 \\ \mathbf{0} & Otherwise \end{cases}$$

Where:

- PWB = Binary DV of feeling sad/lonely
- SchEnv = Index representing perceptions of school environment/infrastructure presence
- CultFactors = Two indices representing perceptions of the community & family culture environment
- ► X = Vector of socioeconomic & demographic controls
 - ▶ Married, Wealth Index, Current Type of Hygiene Product Use

Empirical Approach

- Index Building
 - Used principle component analysis (PCA) & confirmed findings with multiple correspondence analysis (MCA)
 - School:
 - ► One component meets Kaiser rule (Rabe-Hesketh & Everitt, 2004) for eigenvalue >1 → heavily loaded with hard infrastructure (bin, soap, hygiene kits)
 - Culture:
 - Two components with eigenvalue >1 \rightarrow factor loadings based on community & family behavioral restrictions
- ► Logistic Regression
 - Explored inclusion of fixed effects, caste dummies, and controls vector
 - Robustness Checking (outlier removal, bootstrapping, inclusion of additional school binary for counseling)

Basic Statistics

- Average Age = 17.6
- 21.6% use old rags/cloths, 12.9% reusable
- 58.9% report pain, but less than 30% take actions to alleviate
- 9.6% use antiseptic when washing products
- ▶ 42.3% know of drop-out
- ▶ 33.8% missed school for menses
 - ▶ 30% miss more than a day (max 7)
- 68.9% claim life hard/very hard during menstruation

Source: Nepal Study Center, UNM. 2016-2017

Table 2: Marginal Effects of Logistic Regression - Impact of Perceived Support on Psychological Wellbeing

		+	+				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
VARIABLES	Base Model	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
Community Cultural Environ.	0.0425*	0.0502**	0.0442*	0.0482**	0.0520**	0.0409*	0.0457*
	(0.0230)	(0.0232)	(0.0235)	(0.0232)	(0.0232)	(0.0234)	(0.0235)
Family Cultural Environ.	0.0370	0.0352	0.0405	0.0337	0.0328	0.0386	0.0383
	(0.0269)	(0.0257)	(0.0252)	(0.0268)	(0.0257)	(0.0264)	(0.0254)
School Support Environ.	-0.0343*	-0.0713**	-0.0845***	-0.0567**	-0.0782**	-0.0636***	-0.0885***
	(0.0201)	(0.0308)	(0.0308)	(0.0222)	(0.0311)	(0.0231)	(0.0310)
Age	0.234**	0.216*	0.214*	0.226**	0.201	0.213**	0.200*
	(0.0977)	(0.124)	(0.117)	(0.103)	(0.125)	(0.104)	(0.122)
Age Sq.	-0.00667**	-0.00673*	-0.00679**	-0.00629**	-0.00606*	-0.00607**	-0.00619*
	(0.00277)	(0.00348)	(0.00327)	(0.00295)	(0.00353)	(0.00292)	(0.00343)
Fixed Effects ⁱⁱ	No	Yes	Yes	No	Yes	No	Yes
Caste ⁱⁱⁱ	No	No	Yes	No	No	Yes	Yes
Control ^{iv}	No	No	No	Yes	Yes	Yes	Yes
Observations	310	310	310	310	310	310	310
Standard errors in parentheses							

standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

TABLE 3A: Robustness Checks on Marginal Effects of Model 2

VARIABLES Mode Community Cultural Environ. Family Cultural Environ. Conscious School Support Environ. Age Mode (0.02 (0.03) (0.03 (0.03) (0.03 (0.03)	2** 0.0511 32) (0.024 52 0.030 57) (0.026 .3** -0.073 08) (0.032	iers DBETA 1** 0.0488 (42) (0.022 61 0.022 67) (0.025 81** -0.0855 22) (0.031	$\begin{array}{c} >0.6 & Old \\ Outliers \\ 8^{**} & 0.0496^{**} \\ 29) & (0.0238) \\ 70 & 0.0276 \\ 56) & (0.0266) \\ 5^{***} & -0.0878^{***} \\ 10) & (0.0324) \end{array}$	er
(0.02 Family Cultural Environ. 0.03 (0.02 School Support Environ. -0.071 (0.03 Age 0.21 (0.12 Age Sq. -0.006 (0.03	32) (0.024 52 0.036 57) (0.026 .3** -0.073 08) (0.032	(42) (0.022 (61) 0.022 (67) (0.025 (81** -0.0855 (22) (0.031	29) (0.0238) 70 0.0276 56) (0.0266) 5*** -0.0878*** 10) (0.0324)	*
(0.02 Family Cultural Environ. 0.03 (0.02 School Support Environ. -0.071 (0.03 Age 0.21 (0.12 Age Sq. -0.006 (0.03	52 0.030 57) (0.020 3** -0.073 08) (0.032	61 0.027 67) (0.025 81** -0.0855 22) (0.031	70 0.0276 56) (0.0266) 5*** -0.0878*** 10) (0.0324)	*
Family Cultural Environ. 0.03 (0.02 (0.02 School Support Environ. -0.071 (0.03 (0.03 Age 0.21 (0.12 (0.12 Age Sq. -0.006 (0.003 (0.003	52 0.030 57) (0.020 3** -0.073 08) (0.032	61 0.027 67) (0.025 81** -0.0855 22) (0.031	70 0.0276 56) (0.0266) 5*** -0.0878*** 10) (0.0324)	*
School Support Environ. -0.071 Age 0.21 Age Sq. -0.006 (0.03 -0.006	.3** -0.073 08) (0.032	31** -0.0855 22) (0.031)	5*** -0.0878*** 10) (0.0324)	*
Age (0.03 Age 0.21 (0.12 Age Sq0.006 (0.003	08) (0.032	(0.03)	10) (0.0324)	*
Age 0.21 (0.12 Age Sq0.006 (0.003	/	/	/ /	
Age Sq. (0.12 (0.006 (0.003	6* 0.19	0.23	2* 0.206	
Age Sq0.006 (0.003				
(0.003	24) (0.15	54) (0.12	(0.154)	
· · · · · · · · · · · · · · · · · · ·	573* -0.005	-0.0071	-0.00631	
Fixed Effects ¹ Ye	348) (0.004	448) (0.003	(0.00448)	
	s Yes	es Yes	s Yes	
Caste ² No	o No	o No	o No	
Control ³ No	o No	o No	o No	
Observations 310		8 303	3 291	

*** p<0.01, ** p<0.05, * p<0.1

TABLE 3B: Robustness Checks on Marginal Effects of Model 3

	(1)	(2)	(3)	(4)	
VARIABLES	Model 3	Remove Older Outliers	Remove DBETA >0.6	Remove DBETA >0.6 & Older Outliers	
Community Cultural Environ.	0.0442*	0.0445*	0.0421*	0.0422*	
2	(0.0235)	(0.0245)	(0.0232)	(0.0243)	
Family Cultural Environ.	0.0405	0.0416	0.0334	0.0342	
-	(0.0252)	(0.0262)	(0.0252)	(0.0261)	
School Support Environ.	-0.0845***	-0.0872***	-0.0972***	-0.100***	
	(0.0308)	(0.0322)	(0.0312)	(0.0326)	
Age	0.214*	0.189	0.229**	0.202	
	(0.117)	(0.145)	(0.115)	(0.145)	
Age Sq.	-0.00679**	-0.00602	-0.00713**	-0.00630	
	0.214*	0.189	0.229**	(0.00419)	
Fixed Effects ¹	Yes	Yes	Yes	Yes	
Caste ²	Yes	Yes	Yes	Yes	
Control ³	No	No	No	No	
Observations	310	298	304	292	•

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Discussion/Conclusion

Discussion & Policy Implications

- Marginal effects of school environment are double the magnitude of those for culture
 - Culture/taboos hard to change, but School may be good source to implement policy changes
 - Need to consider synergistic role of education & infrastructure (Garg et al, 2012; Dolan, 2014)
 - Need to consider role of men, as they often hold the keys to get things done (Fishman, 2014)
 - Younger people are "change makers" (Snel & Shordt, 2005)
- Limitations
 - Self-reported answers (but model based on perceptions)
 - Have not evaluated extensions to model including coping styles, optimism, "info, seekers vs. blunters"
 - Heterogeneity of Sample (still face a bimodality issue not completely accounted for with FEs or Caste)
 - Do not account for stage of menstrual cycle & hormonal fluctuations (Jang & Elfenbein, 2018; Brock et al, 2016)

Conclusions

- There is a call in MHM research to bring quantitative work & address gaps in coverage of emotional consequences
 - We used primary data from 3 schools in different regions of Western Nepal
 - Focused on emotional wellbeing using the Transactional Model of Stress and Coping as a conceptual framework
 - Performed empirical analysis, getting results robust to multiple specifications
- Results show that the <u>cultural environment</u> Nepalese girls perceive **increases** their probability of feeling lonely/sad during menstruation, while the perceived presence of <u>school infrastructure</u> to support menstrual hygiene **reduces** these feelings

"Two-steps forward with one-step back" – aim policies at schools & improving infrastructure

Thank You!!

