

Benefit Estimation of Water Quality Improvement in Bagmati River Using Choice Modeling

Hari Katuwal, Alok K Bohara, Jennifer Thacher **University of New Mexico**

Introduction

The holy river

Flows through the heart of the Kathmandu Valley

Highly-polluted

Solid waste and sewage, water is black and emanates

a foul odor, no aquatic animals

Impacts

The surrounding environment, cultural and religious

activities and, health of local residents

Consequences

Devaluation of property value, destruction of aesthetic values, adverse health impacts, ground-water aquifer contamination, and endangered livelihoods for farmers

Use and non use values

Agricultural, tourism, aesthetic, cultural, and religious

Significant welfare loss due to pollution

Benefit has rarely been investigated

Government initiation of restoration program Bagmati Action Plant (2009-2014)

Motivation

National Wetland Policy 2003

Conserve and manage wetland resources wisely in a sustainable way with local participation

Bagmati Action Plan 2009-2014

Comprehensive and integrated BAP

Proposal for generating funds Intangible heritage linked with the river

9214 million for 2009-2014

Estimating benefit and understanding preference

Vital for the implementation of restoration program

Objectives

Assessing public preferences and estimating benefits of improving quality of water in the river

- · preferences on attributes of river health • impact of location of HH on WTP
- impact of being close to the river on WTP
- the appropriate revenue-collection mechanism
- preference on the management mechanism
- · impact of religious and cultural factors on
- · impact of knowledge/awareness on WTP

Methodology

Focus Group Discussions and Pretest

Discussion with Key informants-Government official, Planners, NGOs, INGOs

3 Focus Group Discussion-Upstream, Midstream,

downstream

Pretest - 40 households

In-person interview

. Kathmandu, Lalitpur, Bhaktapur, Kirtipur, and

Madhyapur Thimi

1200 households

40 Cluster, 30 households

Choice Experiments

Main effect orthogonal design

18 choice set

- 6 blocks
- 3 choice set to each respondents
- 3 alternatives in each choice set

An Example of Choice Set

Attributes	Alternative A	Alternative B	Atternative C-
			Current situation
Water quality	Walkable on the riverbank	Walkable on the riverbank, suitable for fish and plants and, suitable for swimming and bathing	Water is black, emits a foul odor, and is not suitable for fish and other aquatic animals. Contact with water is dangerous to human health.
Riverside tree plantation	40 percentage	80 percentage	20 percentage
Who is incharge of managing funding?	Municipality	Government	Not applicable
My annual payment for 5 years	Rs 3000 per year	Rs 600 per year	Rs 0 per year
Time Contribution per year	10 days	15 days	0 days

Model Estimation

The Conditional Logit Model

$$LogL = \sum_{i=1}^{n} \sum_{j=1}^{d} d_{ij} . Log Pr_{ij}(y_i)$$

Willingness to Pay

$$MWTP = -\frac{\beta_j}{\beta_c}$$

Results and Discussion

Descriptive statistics

Age (>=18)	35.69
Monthly income (Rs/ per households)	19968
Education	11.95
Sex (% of male)	63.8
Family Size	5.71

Preferences

How much should we spend?

What can you do to improve health of the river?

Suitable improvements in the quality of water

Who should manage the clean up project?

Regression Results

Variables	coefficients	Signifiance
ASC1	-0.0747	Ü
W_QALITY2	0.4970	***
W_QALITY3	0.4563	***
PLANTATION	-0.0003	
M_MUNICIPALITY	0.0313	
M_COMMUNITY	0.2246	***
PAY	-0.3206	***
WTC	0.1074	*
INC	-0.0014	
SOME_COLLEGE	0.1577	*
COLLEGE	-0.0008	
Signif. codes: 0.01 '**	*' 0.05 '**' 0.1 '*'	

Willingness to Pay

Quality of Water
W_QALITY2 (Suitable for fish, aquatic plants) WTP (NRS) W_QALITY3 (Suitable for swimming)
Confidence Interval (WQ2) (1.1801- 1.9954)

Conclusion

Positive WTP for improvement

Kathmanduities are willing to pay

No status quo

Strong preference for improvements

Preference on management

Community preferred over municipal and

government

Tree plantation Not so important

Socioeconomics

Income effect - not significant Education and knowledge- some colleges Distance and spatial- not significant

There is significant loss of welfare to the society because of degradation of health of the river. Residents are willing to contribute their time and money for the improvement of quality of water in the river.

Policy Implications

Welfare estimates and attributes tradeoff Ministry, Municipal Authority CBA for long-term river management

Wastewater treatment, riverside park Preference over payment and fund management

Fund generation and management Participatory Management, Social Network Sustainable management of river

Further Research

Attitude & Behavior towards river restoration

Acknowledgments

Kathmandu School of Management, KUSOM Office space for survey implementation Nepal Study Center, University of New Mexico Office space and funding

For further information

1915 Roma Ave NE, MSC05 3060,

University of New Mexico, Albuquerque, NM 87131.

Email: katuwalh@unm.edu, Tel. 505-277-5560